

Chlamydia pneumoniae IgG EIA

Instructions for use (English)
Notice d'utilisation (Français)
Instrucciones de uso (Español)
Gebrauchsanleitung (Deutsch)

Labsystems Diagnostics Oy
Tiilitie 3, FIN-01720 Vantaa, Finland
Tel. +358-20-155 7523, Fax +358-20-155 7521
E-mail: sales@labsystemsdx.com
www.labsystemsdx.com

12.2.2018

ha sido mezclada	antes de hacer la medida.
correctamente.	

Causa/Error	Solución
PRECISIÓN INCORRECTA	
Las pipetas no están calibrados correctamente.	Compruebe la calibración de pipetas.
Lavado incorrecto debido a una contaminación de las puntas del lavador.	Limpie regularmente las puntas del lavador.
La placa ha estado secándose por mucho tiempo después del lavado.	Siga las instrucciones del kit cuidadosamente.
Calentamiento irregular de la placa.	Ponga en marcha la incubadora.

Gebrauchsanleitung

Nur zum in vitro Diagnostik Gebrauch

Chlamydia pneumoniae IgG EIA

Festphasenenzymimmunoassay zur Bestimmung von Antikörpern gegen Chlamydia pneumoniae im Humanserum oder Plasma

INHALT	Seite
ANWENDUNGSBEREICH	20
EINFÜHRUNG	20
TESTPRINZIP	21
KIT INHALT	21
REAGENZIENVORBEREITUNG	
ZUSÄTZLICH BENÖTIGTES MATERIAL	22
VORSICHTSMAßNAHMEN	22
PROBENENTNAHME UND -VERARBEITUNG	22
TESTDURCHFÜHRUNG	23
ERGEBNISSE	24
BEGRENZUNG DES TESTSYSTEMS	24
TESTCHARAKTERISTIKA	
FEHLERSUCHE	25
LITERATUR	26
ANDERE PRODUKTE	27
GEBRAUCHTE SYMBOLEN	27

ANWENDUNGSBEREICH

Der Labsystems Diagnostics Chlamydia pneumoniae IgG EIA wurde entwickelt zum Nachweis von spezifischen IgG Antikörpern gegen *Chlamydia pneumoniae* im menschlichen Serum oder Plasma.

Die Auswertung erfolgt semiquantitativ und ermöglicht den Vergleich gepaarter Proben. Die Änderung der Antikörpertiter im zeitlichen Verlauf ist eine Hilfe für die Diagnose einer akuten *Chlamydia pneumoniae* Infektion.

Es wird empfohlen, den Test parallel mit den Labsystems Diagnostics Chlamydia pneumoniae IgA und IgM Kits anzusetzen und zu interpretieren.

EINFÜHRUNG

Seit der Beschreibung von *Chlamydia pneumoniae* als Pathogen (1) 1986, hat diese Spezies weltweite Bedeutung als Infektionsauslöser erlangt. *C. pneumoniae* ist in erster Linie ein Erreger des Respirationstraktes, der ungefähr 10-20% der erworbenen Pneumonien bei Erwachsenen und Kindern, sowie 10-20% der akuten Bronchitiden bei Erwachsenen verursacht (2, 3, 4). Zusätzlich verursacht er Sinusitis, akute Pharyngitis und kann Asthma auslösen (5). Die meisten Infektionen mit diesem Mikroorganismus verlaufen subklinisch und asymptomatisch, klinische Verlaufsformen sind selten (3). Chronische *C. pneumoniae* Infektionen werden als zusätzlicher Faktor bei der Entwicklung von Artheriosklerose diskutiert (6,7)

Seroepidemiologische Studien (8, 9, 10, 11) unterschiedlichen Bevölkerungsgruppen ergaben, dass die Seroprävalenz bei jungen Kindern und Jugendlichen stark zunimmt. Nach dem jugendlichen Alter steigt die Prävalenz weiterhin an, und kann fast eine komplette Sättigung der IgG und IgA - Antikörper im Alter aufweisen (11).

Bis heute basieren die meisten Untersuchungen auf serologischer Diagnostik. Frühe Studien wurden mit der Komplementfixation (CF) durchgeführt. Dieser Test ist Genus -spezifisch und zeigt eher positive Ergebnisse bei frühen Infektionen, als bei Reinfektionen (8). Der MIF-Test ist beinhaltet aber eine Spezies-spezifisch, subjektive Komponente und erfordert erfahrenes Personal bei der Auswertung. Außerdem eignet er sich nicht Automatisierung bei hohem Probenaufkommen.Die EIA Methode wurde entwickelt, um einerseits technische Probleme mit dem MIF Test zu umgehen, andererseits bietet er eine einfache, schnelle und objektive Durchführung.

TESTPRINZIP

Der Labsystems Diagnostics Chlamydia pneumoniae IgG EIA ist ein indirekter Festphasenenzymimmunoassay mit Meerrettich-peroxidase als Marker Enzym. Der Testlauf entspricht folgenden Reaktionen:

Falls im Patientenserum IgG Antikörper gegen Chlamydia pneumoniae enthalten sind, binden diese an das Antigen, welches an die Oberfläche der Mikrotiterstreifen gebunden ist. Überschüssiges Patientenserum wird durch Waschen entfernt. Meerrettich-Peroxidase konjugierte anti-human IgG Antikörper (Schaf) werden hinzugefügt.

Ungebundenes Konjugat wird durch Waschen entfernt und farbloses Enzymsubstrat (H_2O_2) und Chromogen (TMB, Tetramethylbenzidin, ein nicht mutagenes Chromogen für Meerrettich-Peroxidase) werden hinzugefügt. Enzymreaktion mit dem Chromogen resultiert in einem farbigen Endprodukt. Die Farbbildung wird durch Zugabe von Stopplösung (H₂SO₄) beendet. Die Farbintensität ist direkt proportional zur Konzentration von Chlamydia pneumoniae Antikörpern in der Patientenprobe.

KIT-INHALT

Hinweis:

- Reagenzien sind bei +2°C und +8°C zu lagern.
- Das Verfallsdatum ist auf jeder Komponente des Kits und auf dem Außenetikett angegeben. Reagenzien nach Ablauf des Verfalldatums nicht mehr verwenden.
- Vermeiden Sie direkten Lichteinfluß. Dies ist eine reine lichtempfindlichen Vorsichtsmaßnahme. Die Reagenzien sind das Konjugat und die Substratlösung. Die letztere ist zum Schutz in undurchsichtige Kunststoffgefäße abgefüllt

Austauschbare Komponenten:

Folgende Reagenzien können beliebig Tests Labsystems Diagnostics' Chlamydia pneumoniae, Chlamydia trachomatis, Mycoplasma pneumoniae und Bordetella pertussis IgG, IgA und IgM verschiedener Chargen-Nummern verwendet werden:

-Waschlösung

-Stopplösung

-TMB-Substratlösung

Diese Lösungen können auch separat bestellt werden (siehe Produktliste).

- Probenverdünnungslösung kann zwischen die Tests Chlamydia pneumoniae IgG, IgA und IgM verwendet werden, auch zwischen verschiedenen Chargen.
- IgG Absorptions-Reagenz kann zwischen verschiedenen Chargen der Tests Chlamydia pneumoniae IgM benutzt werden.
- 1 Mikrotiterplatte, 12 x 8 Vertiefungen ("CPG") Beschichtete Mikrotiterplatte
- 2. Probenverdünnungslösung, 100 ml

Phosphatgepufferte Kochsalzlösung mit Zusätzen, einem blauen Farbstoff und 0,05% Bronidox® als Konservierungsmittel.

3a. Kalibrator (EIU = 130), 1,0 ml

Verdünntes Humanserum mit 0,05% Bronidox® als Konservierungsmittel und einem roten Farbstoff. Potentiell infektiöses Material!

Grenzwert-Kontrolle, 1,0 ml

Verdünntes Humanserum mit mittlerem Anteil an 0,05% als Antikörpern, mit Bronidox® Konservierungsmittel und einem roten Farbstoff. Potentiell infektiöses Material!

Positiv-Kontrolle, 1,0 ml 3c.

Verdünntes Humanserum mit hohem Anteil Antikörpern, mit 0,05% Bronidox® Konservierungsmittel und einem roten Farbstoff. Potentiell infektiöses Material!

Konjugat, 30 ml 4.

Gepufferte Salzlösung mit Zusätzen, einem roten Farbstoff und Meerrettich-peroxidase konjugierten anti-human IgG Antikörpern (Schaf) mit 0,1% N-Methylisothiazolon als Konservierungsmittel.

- 5. TMB-Substratlösung, gebrauchsfertig, 18 ml Citratpuffer, enthält 3,3', 5,5'-Tetramethylbenzidin Wasserstoffperoxid mit Zusätzen und 0,01% Kathon CG als Konservierungsmittel.
- Stopplösung, 25 ml 6. $0,45 \text{ M H}_2\text{SO}_4$
- 7. Waschlösung , 100 ml Konzentrierte citratgepufferte Kochsalzlösung mit Zusätzen und 0,05% Bronidox® als Konservierungsmittel.

Abdeckfolien für die Platten, 2 Stück Einweg - Reagenzbehälter, 6 Stück

REAGENZIENVORBEREITUNG

	T	T
Reagenz	Vorbereitung	Stabilität von geöffneten oder verdünnten Reagenzien (+2°C bis +8°C)
1 Beschichtete Mikrotiterplatte	Gebrauchsfertig	6 Monate
2 Probenverdün- nungslösung	Gebrauchsfertig	6 Monate*
3 Kalibrator und Kontrollen	Gebrauchsfertig	6 Monate*
4 Konjugat	Gebrauchsfertig	6 Monate*
5 TMB- substratlösung	Gebrauchsfertig	6 Monate* Verwerfen Sie die restliche Lösung. Eine tiefblaue Farbe in der substratlösung zeigt eine Kontamination an. Die Lösung muss verworfen werden.
6 Stopplösung	Gebrauchsfertig	6 Monate*
7 Waschlösung- Konzentrat (10X)		6 Monate*
Waschlösung:	Verdünnen Sie das Konzentrat (Lsg. 7) 1+9 (1:10) mit destilliertem Wasser	1 Monat bei +4°C oder 1 Woche bei Raumtemperatur

*) Nach dem Öffnen ist die Mikrotiterplatte-Folienverpackung dicht mit einem Entfeuchter verschlossen zu halten: Falten Sie die geöffnete Seite mehrmals und verschließen Sie diese luftdicht mittels Klebeband über die gesamte Breite. Die Stabilität der geöffneten Reagenzien bis zu Maximum kann nur bei Lagerung bei +2°C bis +8°C erreicht werden. Hohe Umgebungstemperaturen und Kontamination können die Stabilität herabsetzen.

ZUSÄTZLICH BENÖTIGTES MATERIAL

- Destilliertes oder deionisiertes Wasser, vorzugsweise steril.
- Meßzylinder zur Verdünnung der Reagenzien.
- Gefäße zur Aufbewahrung der verdünnten Reagentien
- Präzisionspipetten (1-Kanal-Pipetten z.B. 0,5-10 μ l, 5-50 μ l, 20-200 μ l, 100-1000 μ l und 8-Kanal-Pipetten z.B. 50-300 μ l)
- Papiertücher oder saugfähiges Papier.
- Laborwecker bis zu 60 Min.
- Mikrotitrationsplatteninkubator, nicht obligatorisch
- Mikrotitrationsplattenphotometer, 450 nm
- Waschautomat für Mikrotitrationsplatten
- Natriumhypochloritlösung (50-500mg/l frei verfügbares Chlor) zur Desinfektion
- Einmalhandschuhe.

VORSICHTSMAßNAHMEN

Nur zum *in vitro* Diagnostik Gebrauch. **Warnung: Potentiell infektiöses Material!**

Jede Spendereinheit wurde auf Antikörper gegen HIV (Human Immunodeficiency Virus), HCV (Hepatitis C Virus) und Hepatitis B Marker (HBsAg) getestet. Die Ergebnisse waren negativ. Da kein Test und keine Inaktivierungsmethode komplette Sicherheit dafür bieten können, daß HIV, HBV, HCV oder andere infektiöse Bestandteile nicht vorhanden sind, sollten diese Reagenzien entsprechend Sicherheitsstufe 2 behandelt werden, gemäß der Empfehlung des Center for Disease Control / National Institutes for Health Manual "Bio Safety in Microbiological and Biomedical Laboratories" 2007 (14).

Vernichten Sie alle Materialien und Proben wie infektiöses Material. Die beste Methode zur Vernichtung ist Autoklavieren für mindestens eine Stunde bei 121°C. Flüssiger Abfall ohne Säure und neutralisierter Abfall kann mit Natriumhypochlorit gemischt werden, so daß die Lösung insgesamt 50 - 500 mg/l freies Chlor enthält, 30 Minuten einwirken lassen. Verschüttete Reagenzien sollten mit einer jodhaltigen Desinfektionslösung oder Natriumhypochlorit entfernt werden. Tücher, die zum Entfernen solcher Reagenzien benutzt werden, sollten wie infektiöses Material behandelt werden. Wiederverwendbare Glasgefäße müssen desinfiziert und frei von Überresten des Reinigungsmittels sein.

Flüssiger, säurehaltiger Abfall muß mit Lauge neutralisiert werden, bevor Natriumhypochlorit dazugegeben wird. Die Stopplösung (Gefäss 6) enthält 0,45 M Schwefelsäure. Vermeiden Sie kontakt mit Haut und Augen.

Tragen Sie Einmalhandschuhe beim Arbeiten mit den Proben und den Reagenzien. Waschen Sie sich anschließend sorgfältig die Hände. Pipettieren Sie **nie** mit dem Mund!

Verwenden oder vertauschen Sie keine Platten, Kontrollen, Kalibratoren oder Konjugate aus verschiedenen Chargen-Nummern dieses Produktes. Die Verschlüsse der Fläschchen dürfen nicht vertauscht werden.

Nach Beginn des Tests sollten alle Schritte nacheinander ohne Unterbrechung ausgeführt werden. Lassen Sie die Vertiefungen nach Beginn des Testes nie austrocknen

Benutzen Sie einen Teststreifen der Mikrotiterplatte nie zweimal, auch wenn einige Vertiefungen unbenutzt sind.

Präzises Pipettieren und striktes Einhalten der Inkubationszeiten und -temperaturen sind erforderlich

PROBENENTNAHME UND -VERARBEITUNG

Nach der Gewinnung sollten Serum- und Plasmaproben gekühlt bei +2°C - +8°C aufbewahrt werden. Wenn die Analyse nicht innerhalb von einer Woche durchgeführt werden kann, sollten die Proben bei -20°C oder besser bei -70°C eingefroren werden. Wiederholtes Auftauen und Einfrieren der Proben sollte vermieden werden.

Benutzen Sie kein Natrium-Azid als Konservierungsmittel, da es die Meerrettichperoxidase inaktiviert.

Hitze-Inaktivierung von Serum oder Plasma (30 Min. bei +56°C) kann zu unspezifischen Ergebnissen führen.

Mikrobielle Kontamination, starke Hämolyse oder Hyperlipämie der Serum- und Plasmaproben können die Ergebnisse verfälschen.

Bei zu langer Lagerung von Serum- oder Plasmaproben (länger als ein Jahr tiefgefroren) bilden sich möglicherweise Lipidaggregate, die unspezifische Ergebnisse verursachen können.

Die Chlamydia pneumoniae IgG, IgA und IgM EIAs können aus Serum und Plasma (EDTA, Lithiumheparin und Natriumcitrat) durchgeführt werden. Gepaarte Proben sollten jedoch auf die gleiche Weise gewonnen werden.

Bemerkenswert ist, dass die Serum- und EDTA- und Heparinplasmaergebnisse vergleichbar sind, während die Ergebnisse für die Citratplasmaproben systematisch etwas niedriger liegen, was auf die Verdünnung des Plasmas mit Antikoagulanzien zurückzuführen ist.

TESTDURCHFÜHRUNG

VORBEREITUNG

- Bringen Sie die Reagenzien und die Mikrotiterplatte auf Raumtemperatur (+20°C bis +25°C), bevor Sie mit der Testdurchführung beginnen.
- Regulieren Sie den Inkubator auf +37°C.

Pre-Schritt: Proben im Verhältnis 1:101 in Probenverdünnungslösung verdünnen. ¹⁻²

SCHRITT I

- -Reservieren Sie 2 Kavitäten für den Leerwert
- -Zuerst pipettieren Sie 10 μl der verdünnten Proben 1-2
- -Dann pipettieren Sie in Doppelbestimmung 10 μ l des gebrauchsfertigen Kalibrators (Lsg. 3a) und der gebrauchsfertigen Kontrollen (Lsg. 3b und 3c) 1-2
- -Pipettieren Sie 100 μl Probenverdünnungslösung in jede Vertiefung 2
- -Decken Sie die Platte ab und inkubieren Sie für **1 Stunde** (± 5 Min.) **bei +37°C** (±1°C).
- -Waschen Sie 5 x 300-400 µl/ Vertiefung³

SCHRITT II

- -Pipettieren Sie 100 μl Konjugat (Gefäß 4) in jede Vertiefung
- -Decken Sie die Platte mit der Abdeckfolie ab. Inkubieren Sie **1 Stunde** (± 5 Min.) **bei +37°C** (±1°C).
- -Waschen Sie 5 x 300-400 μl/ Vertiefung³

SCHRITT III

- -Geben Sie **100 μl** TMB-Substratlösung (Gefäß 5) in jede Vertiefung²
- -Inkubieren Sie **30 Minuten bei Raumtemperatur** (+20°C bis +25°C), **im Dunkeln**.

SCHRITT IV

-Geben Sie 100 μl Stopplösung (Gefäß 6) in jede Vertiefung².

-Messen Sie die Absorption sofort bei $450~\mathrm{nm}$ / Referenz 620 nm (590 - 690 nm). 4

Hinweise

Es wird empfohlen, für mehr Effizienz und Präzision eine 8-Kanal-Pipette zu verwenden

- 1.Proben im Verhältnis 1:101 (5 µl Probe und 500 µl Probenverdünnungslösung) verdünnen. Es wird empfohlen, Doppelbestimmungen besonders für den Kalibrator anzuwenden. **Gut vermischen.** Die vorverdünnten Patientenproben sind bei +4°C mindestens 2 Wochen stabil. Für hochkonzentrierte Proben sehen Sie auch "Begrenzung des Testsystems ". **Der Kalibrator und die Kontrollen dürfen nicht verdünnt werden**
- 2. Kontamination vermeiden. Bei Entnahme von Reagenzien aus den Gefäßen pipettieren Sie möglichst steril zur Vermeidung von Kontaminationen. Benutzen Sie für jede Probe eine neue Pipettenspitze. Um Kontaminationen des Konjugats zu vermeiden, füllen Sie die benötigte Menge Konjugat in einen Einweg-Reagenzbehälter. Verwerfen Sie nach Gebrauch die restliche Konjugatlösung, füllen Sie sie nicht ins Gefäß zurück. Hierfür enthält der Kit 6 Einweg-Reagenzbehälter. Die Behälter können auch für die TMB-Substratlösung und Probenverdünnungslösung verwendet werden. Achten Sie darauf, die Vertiefungen während des Pipettierens der TMB-Substratlösung nicht zu berühren.
- 3. Das Waschen kann manuell oder mit einem Waschautomaten erfolgen. Es wird empfohlen, für 15 30 Sekunden die Waschlösung in den Vertiefungen während jedes Waschvorgangs zu inkubieren. Nach dem Waschen entfernen Sie die Restflüssigkeit durch Aufklopfen der Mikrotiterplatte auf saugfähigem Papier
- 4 Der Leerwert sollte gemessen werden, um nachzuprüfen, ob dessen Absorption innerhalb der Grenzen der Kontrollwerte liegt

MEHRFACHTESTS

Antikörper (IgG, IgA, IgM) gegen Mycoplasma pneumoniae, Chlamydia pneumoniae und Bordetella pertussis können aus derselben 1:101-Probenvorverdünnung bestimmt werden mit entsprechenden Labsystems Diagnostics EIA Tests. Für den Fall muss die Probenvorverdünnung mit der Mycoplasma pneumoniae Bordetella pertussis oder Probenverdünnungslösung (1+100) hergestellt werden. Einzelheiten entnehmen Sie den entsprechenden Gebrauchsanleitungen.

Bestimmung von Mycoplasma pneumoniae (Mp), Chlamydia pneumoniae (Cp) und Bordetella pertussis (Bp) IgG, IgA und IgM aus derselben 1:101-Probenvorverdünnung:

Vorverdünnung:

5 μl Probe + 500 μl **Mp oder Bp Probenverdünnungslösung** => Vorverdünnte Probe (1:101)

Bestimmung von Chlamydia pneumoniae

Document of the street of the					
In die Vertiefungen:	IgG EIA	IgA EIA	IgM EIA		
Vorverd. Probe (1:101)	10 μΙ	10 ul	10 μΙ		
Cp Probenverdünnungs lösung	100 μΙ	100 µl	-		
Cp IgG Absorptions- Reagenz	-	-	100 μΙ		
Endgültige Verdünnung	1:1111	1:1111	1:1111		

Bestimmung von Mycoplasma pneumoniae

Bestimming von mycopiasma pricamomac					
In die Vertiefungen::	IgG EIA	IgA EIA	IgM EIA		
Vorverd. Probe (1:101)	50 μl	50 μl	50 μl		
Mp Probenverdünnungs lösung	50 μΙ	50 µl	-		
Mp IgG Absorptions- Reagenz	-	-	50 μl		
Endgültige Verdünnung	1:202	1:202	1:202		

Bestimmung von Bordetella pertussis

In die Vertiefungen::	IgG EIA	IgA EIA	IgM EIA
Vorverd. Probe (1:101)	100 μΙ	50 μl	50 µl
Bp Probenverdünnungs lösung	1	50 µl	-
Bp IgG Absorptions- Reagenz	-	-	50 μΙ
Endgültige Verdünnung	1:101	1:202	1:202

ERGEBNISSE

Berechnung der Ergebnisse

Die Ergebnisse werden in Enzym-Immuno-Units (EIU) angegeben. Der Kit ist in der Weise kalibriert, daß die EIU's mit den umgekehrten Titerstufen des Labsystems Diagnostics C. pneumoniae IgG MIF ungefähr korrelieren.

Verwenden Sie folgende Formel für die Berechnung:

A Probe = Absorption der Probe
A Blank = Absorption des Leerwertes
A Kalibrator = Absorption des Kalibrators

Beispiel 1: Angabe der Ergebnisse in EIU

7 5 5			
	Mittelwert der Absorption	EIU	
	bei 450 nm		
Leerwert	0,070		
Kalibrator	0,759		
Grenzwert-Kontrolle	0,280	40	
Positiv-Kontrolle	1,186	211	
Probe 1	0,250	34	
Probe 2	0,977	171	

Qualitätskontrolle

Die Ergebnisse des Testlaufs sind akzeptabel, wenn:

2:0 =: goz:::000 000 : 0000000 0::00			
Leerwert	Absorbtion		
	< 0.150		
Kalibrator	0.400 – 1.200 *)		
	,		
	EIU-Einheiten		
Grenzwertkontrolle	20 – 60		
Positive Kontrolle	150 – 270		

^{*)} Die Reagenzblank-Absortion ist hiervon bereits abgezogen.

Interpretation der Ergebnisse

EIU < 30 Negativ

 $30 \le EIU \le 45$ Grenzwertig

EIU > 45 Positiv

Mit der Untersuchung von im optimalen Zeitabstand (in der Regel 2-4 Wochen) entnommenen Serumproben ermöglicht der Chlamydia pneumoniae IgG EIA die Unterscheidung zwischen akuter und nicht-akuter Infektion auf Grund der Serokonversion.

Akute Infektion:

Wenn die EIU Werte unter 130 liegen spricht eine 1,5-fache oder größere Titerveränderung bei der Untersuchung gepaarter Proben im selben Testansatz für eine Serokonversion.

Bei EIU Werten über 130 ist ein 1,3-fache Titerveränderung im selben Testansatz ein Hinweis auf eine Serokonversion.

Labsystems Diagnostics Chlamydia pneumoniae IgA und IgM EIA's geben zusätzliche Informationen für die Diagnose einer akuten *Chlamydia pneumoniae* Infektion. Bei der primären, akuten Infektion kann bereits in der ersten Serumprobe eine IgM-Antwort nachweisbar sein. Die IgG-Antwort entwickelt sich langsamer, insbesondere wenn der Patient Antibiotika gegen Chlamydien-Infektionen erhalten hat. Schnelle IgG und IgA Antwort ist ein typisches Merkmal einer Reinfektion.

Nicht - akute Infektion:

Stabile oder abfallende IgG und /oder IgA - Antikörper Level mit nicht nachweisbarem oder grenzwertigem IgM, sind ein Hinweis auf: zurückliegende Infektion, abklingende Infektion, Zustand nach Therapie oder persistierende Infektion.

BEGRENZUNG DES TESTSYSTEMS

Da eine einzelne Methode nie zu einer definierten Diagnose führen kann, sollten die mit diesem Test erhaltenen Ergebnisse immer im Zusammenhang mit dem klinischen

Bild, der epidemiologischen Situation und anderen Labormethoden interpretiert werden.

Eine während der akuten Phase der Infektion entnommene Serumprobe, die nur IgM-Antikörper enthält, kann im IgG und/oder IgA EIA noch negativ sein. In einigen Fällen kann eine akute *C. pneumoniae* Infektion nicht zur Antikörperantwort führen (12). Solche Nicht-Responder sind jedoch selten.

Aufgrund der begrenzten Anzahl gesicherter *Chlamydia psittaci* Fälle, konnte die Gesamt-Spezifität nicht bestimmt werden. Da die Behandlung in beiden Fällen (*C. pneumoniae* und *C. psittaci*) weitestgehend gleich ist, mindert diese Einschränkung nicht die Bedeutung der Ergebnisse.

Die vorliegende Methode ist anhand des Labsystems Diagnostics Chlamydia pneumoniae IgG MIF optimiert worden. Da die MIF-Methoden im allgemeinen subjektive Ergebnisse liefern, die in verschiedenen Laboren variieren, wird davon abgeraten, Titer von "in-house" MIF-Methoden oder kommerziell erhältlichen MIF Tests mit den EIU's des EIA's zu vergleichen, denn eine komplette Übereinstimmung ist nicht unbedingt möglich.

Proben mit Absorptionen größer als die Positiv-Kontrolle sollten mehr als 1 + 100 (z.B. 1 + 200 ... 1 + 400 1 + 800) verdünnt werden, um Ergebnisse im linearen Bereich der Kurve zu erhalten. Das berechnete EIU Ergebnis wird mit dem Verdünnungsfaktor (z. B. 2,4 oder 8) multipliziert. Es ist wichtig, daß gepaarte Seren simultan verdünnt und getestet werden.

Der Test sollte von ausgebildeten Labortechnikern durchgeführt werden.

TESTCHARAKTERISTIKA

Spezifität

16 verfügbare *Chlamydia trachomatis* IgG positive aber *Chlamydia pneumoniae* IgG negative Seren (bestätigt im Labsystems Diagnostics IgG MIF) zeigten keinerlei Kreuzreaktivität im C. pneumoniae IgG EIA.

Gepaarte Seren (N=20) von Kindern und Erwachsenen mit kulturell nachgewiesener *Bordetella pertussis* Infektion wurden mit dem C. pneumoniae EIA untersucht. Alle Fälle wurden als *Chlamydia pneumoniae* negativ beurteilt.

Reproduzierbarkeit

Intra-Assay Reproduzierbarkeit

	mera Assay Reproduzierbarkere					
	Proben	Verdün	EIU	CV%		
nungen						
	Probe 1 10		31.7	4.1		
	Probe 2 10		100.4	3.6		
	Probe 3	10	119.2	4.7		

Inter-Assay Reproduzierbarkeit

Proben	Verdün	Operato	Test	EIU	CV%
	nungen	ren	läufe		
Probe 1	4	5	10	30	15.4
Probe 2	4	5	10	53	10.9
Probe 3	4	5	10	87	15.0
Probe 4	4	5	10	145	8.4

Zusammenfassung der Studien

Gepaarte Serumproben, die während des Ausbruchs einer *C. pneumoniae* Epidemie in Schweden 1995 gesammelt wurden, wurden auf Serokonversion untersucht. Die Serokonversionsrate, die mit den Tests von Labsystems Diagnostics ermittelt wurde, wurde mit der entsprechenden Serokonversionsrate, die mit zwei Vergleichs-EIA Tests, und einem hausinternen MIF ermittelt wurde, verglichen. Serokonversion von IgG und IgA und/oder positives IgM in den Labsystems Diagnostics Tests wurde als Hinweis auf eine akute *C. pneumoniae* Infektion interpretiert.

Die in die Studie einbezogenen Proben entstammten folgenden ursprünglich eingeteilten Gruppen:

- Positive Serumpaare, d. h. akute primäre oder Re-Infektion (n = 106)
- Negative Serumpaare, d. h. keine Infektion oder zurückliegende Infektion (n = 134)

Vergleich von vier serologischen Methoden zum Nachweis einer akuten *C. pneumoniae* Infektion (13)

	MIF (%)	EIA 1 (%)	EIA 2 (%)	EIA (%)
	hausintern	Vergleichs-	Vergleichs- Vergleichs- L	
		EIA	EIA	Diagnostics
Sensitivität	93/106 (88)	92/106 (87)	97/106 (92)	102/106 (96)
Spezifitet	133/134 (99)	132/134 (99)	127/134 (95)	133/134 (99)
PV pos.	93/94 (99)	92/94 (98)	97/104 (93)	102/103 (99)
PV neg.	133/146 (91)	132/146 (90)	127/146 (93)	133/137 (97)

Die Ergebnisse der Studie zeigen, daß von 106 Fällen, die von mindestens 2 Methoden als akute Infektionen interpretiert wurden, der Vergleichs-EIA 1 14 Fälle, der Vergleichs-EIA 2 9 Fälle fehlinterpretierte, der Labsystems Diagnostics EIA dagegen nur 4 Fälle.

Schlußfolgerung

Wegen der reproduzierbaren und objektiveren Ergebnisse kann der EIA gut zwischen zurückliegender Infektion und Reinfektion differenzieren. Demzufolge wird den Patienten mit Reinfektionen während einer Epidemie schneller eine spezifische Behandlung zuteil werden.

FEHLERSUCHE

Leerwert ist zu hoch

Ursache / Fehler	Lösung
1. Kontamination durch Spritzer	Vermeiden Sie
von anderen Vertiefungen.	Kontaminationen.
Das Waschlösungskonzentrat wurde nicht korrekt verdünnt.	Verdünnen Sie die Waschlösung im Verhältnis 1:10 (1+9)
3. Nicht ausreichendes Waschen.	Überprüfen Sie Ihren Washer.
4. Kontamination des Reaktionsgefäßes für das TMB- substrat	Heben Sie die restliche TMB-substratlösung bis zum Testende auf. Prüfen Sie, ob sich die Lösung im Gefäß blau färbt. Dies ist ein Hinweis auf eine Kontamination.

Ursache/Fehler Lösung				
ALLE EXTINKTIONSWERTE S				
Inkubationstemperatur ist	Inkubieren Sie bei 37°C			
zu niedrig	±1°C. Verschiedene			
	Geräte heizen			
	unterschiedlich gut.			
	Inkubatoren, die effizient			
	und gleichmäßig wärmen, sind vorzuziehen.			
Kontamination von	Alle Absorptionswerte sind			
Konjugat mit Spritzern von	niedrig. Bereits geringe			
Humanserum	Serummengen im			
	Nanoliterbereich genügen,			
	um die Aktivität des			
	Konjugats zu blockieren.			
	Achten Sie besonders			
	darauf, Kontaminationen			
	zu vermeiden.			
3. Kontamination von	Vereinzelte			
Vertiefungen mit Spritzern von	Absorptionswerte sind			
Humanserum	(sehr) niedrig. Achten Sie			
	besonders darauf,			
	Kontaminationen zu			
	vermeiden.			
Reagenzien sind abgebaut	Aliquot nur unter sterilen			
* I what was a street and a	Bedingungen aus den			
* durch Kontamination oder	Reagenzgefäßen			
HRP Abbau des Konjugats	entnehmen, um Konta- minationen zu vermeiden,			
* durch unsachgemäße	ansonsten können			
Lagerung	fehlerhaft Resultate			
Lagorang	auftreten. Reagenzien von			
	Lichteinfall schützen.			
	Lagern Sie die Reagenzien			
	bei + 4 °C.			
Reagenzien wurden vor dem Testansatz nicht auf	Die Reagenzien sollten vor dem Teastansatz auf			
Raumtemperatur erwärmt.	+20°C bis +25°C erwärmt			
	werden.			
6. Inkubationszeit ist zu kurz	1 Stunde ± 5 Min oder 30			
	Min inkubieren.			
7. Austausch von Reagenzien	Verwenden Sie keine			
aus verschiedenen Chargen	Reagenzien aus			
	verschiedenen Chargen in einem Testansatz.			
8. Nach Zugabe der	Mischen Sie sorgfältig			
Stopplösung wurde nicht	nach Zugabe der			
ausreichend gemischt	Stopplösung.			

Geringe Präzision

-ösung
Überprüfen Sie die
Kalibrierung der Pipetten.
Reinigen Sie die Zähne des
Vaschkamms regelmäßig.
Befolgen Sie strikt die
Testanweisung in der
Gebrauchsanleitung.
Wartung des verwendeten
nkubators oder Brutschranks.
) (R A) (R A)

REFERENCES / REFERENCIAS

- Grayston JT, Kuo CC, Wang SP, Altman J. A new Chlamydia psittaci strain, TWAR, isolated in respiratory tract infections. N Engl J Med 1986; 315:161-168.
- 2. Grayston JT. Chlamydia pneumoniae, strain TWAR. Chest 1989; 95:664-669.
- Kleemola M, Saikku P, Vasakorpi R, Wang SP and Grayston JT. Epidemics of pneumonia caused by TWAR. J Infect Dis 1988;157:230-236.
- Grayston JT, Aldous MB, Easton A, Wang SP, Kuo CC, Campbell LA et al. Evidence that Chlamydia pneumoniae causes pneumonia and bronchitis. J Infect Dis 1993; 168:1231-1235.
- Hahn DL, Dodge RW and Golubjatnikov R. Association of Chlamydia pneumoniae (strain TWAR) infection with wheezing, asthmatic bronchitis and adult-onset asthma. JAMA 1991;266:225-230.
- Saikku P, Leinonen M, Mattila K, Ekman MR, Nieminen MS, Mäkelä PH et al. Serological evidence of an association of a novel Chlamydia, TWAR, with chronic coronary heart disease and acute myocardial infarction. Lancet 1988;2:983-986.
- 7. Saikku P, Leinonen M, Tenkanen L, Linnanmäki E, Ekman MR, Manninen V et al. Chronic *Chlamydia pneumoniae* infection as a risk factor for coronary heart disease in the Helsinki Heart Study. Ann Int Med 1992;116:272-278.
- 8. Grayston JT, Campbell LA, Kuo CC, Mordhorst CH, Saikku P, Thom DH and Wang SP. A new respiratory tract pathogen: *Chlamydia pneumoniae* strain TWAR. J Infect Dis 1990;161:618-625.
- Kuo CC, Jackson LA, Campbell LA, and Grayston JT. Chlamydia pneumoniae (TWAR). Clin Microbiol Rev 1995; 8:451-461.
- Karvonen M, Tuomilehto J, Pitkänen J, Naukkarinen A and Saikku P. Chlamydia pneumoniae IgG antibody prevalence in south-Western and Eastern Finland in 1982 and 1987. Int J Epid 1994; 23:176-184.
- Tuuminen T, Varjo S, Ingman H, Weber T, Oksi J and Viljanen M. Prevalence of *Chlamydia pneumoniae* and *Mycoplasma pneumoniae* in a healthy Finnish population as analyzed by quantitative enzyme immunoassays (EIAs). Clin Diagn Lab. Immunol. 2000; 7:734-738.
- Pizzichini MMM, Pizzichini E, Efthimiadis A, Clelland L, Mahony JB et al.: Markers of inflammation in induced sputum in acute bronchitis caused by *Chlamydia* pneumoniae. Thorax 1997; 57: 929-931
- Persson K, Boman J. Comparison of five serologic tests for diagnosis of acute infections by *Chlamydia* pneumoniae. Clin Diagn Lab. Immunol. 2000; 7:739-744.
- 14. Biosafety in Microbiological and Biomedical Laboratories. U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention and National Institutes of Health. 5th Edition 2007. US Government Printing Office. Washington 2007

RELATED PRODUCTS / PRODUITS AFFILIÈS / PRODUCTOS RELACIONADOS/ANDERE PRODUKTE

Product		
number	Description	Size
6111 300	Chlamydia pneumoniae IgG EIA	96 wells
6111 310	Chlamydia pneumoniae IgA EIA	96 wells
6111 320	Chlamydia pneumoniae IgM EIA	96 wells
6111 400	Mycoplasma pneumoniae IgG EIA	96 wells
6111 410	Mycoplasma pneumoniae IgA EIA	96 wells
6111 420	Mycoplasma pneumoniae IgM EIA	96 wells
0444 500	D 14 II 4 1 1 0 EIA	00 !!
6111 500	Bordetella pertussis IgG EIA	96 wells
6111 510	Bordetella pertussis IgA EIA	96 wells
6111 520	Bordetella pertussis IgM EIA	96 wells
6111 045	Washing solution	100 ml
6111 055	Washing solution TMB-substrate solution	18 ml
6111 060	Stopping solution, 0,45 M H2SO4	25 ml
6108 380	C. pneumoniae IgG/IgM MIFA	20x21 w.
6108 382	C. pneumoniae IgG/IgM MIFA	20x12 w.
6108 390	C. pneumoniae IgA MIFA	20x21 w.
6108 392	C. pneumoniae IgA MIFA	20x12 w.
6108 384	C. pneumoniae MIFA slides	5x21 wells
0100 00-	o. phoditionae Will Atoliaco	OAL I WEIIS

SYMBOLS USED / SYMBOLES UTILISÉS / SIMBOLOS UTILIZADOS / GEBRAUCHTE SYMBOLEN / SIMBOLI USATI

Products / Produits / Productos / Produkte / Prodotto		
6111 300	Chlamydia pneumoniae IgG EIA	
6111 310	Chlamydia pneumoniae IgA EIA	
6111 320	Chlamydia pneumoniae IgM EIA	
6111 400	Mycoplasma pneumoniae IgG EIA	
6111 410	Mycoplasma pneumoniae IgA EIA	
6111 420	Mycoplasma pneumoniae IgM EIA	
6111 500	Bordetella pertussis IgG EIA	
6111 510	Bordetella pertussis IgA EIA	
6111 520	Bordetella pertussis IgM EIA	
6111 101	Chlamydia Trachomatis IgG EIA	
6111 111	Chlamydia Trachomatis IgA EIA	
6111 045	Washing solution	
6111 055	TMB-substrate solution	
6111 060	Stopping solution, 0,45 M H2SO4	

CE-mark
CE-mark
Markado CE
CE-Kennenzeichen
Marchio CE

CE-mark, code of the Notified Body CE-mark, code des autorités compétentes Markado CE, no. del organismo notificado CE-Kennenzeicheh, Kennnummer der benannten Stelle Marchio CE, codice delle autorita competenti

Catalog number Ref. no No. de catálogo Bestellnr. Cat.n.

Contains sufficient for < n > tests Pour n dosages Para n determinaciones Für n Bestimmungen Per n determinazioni

Use by YYYY-MM A utiliser avant YYYY-MM Utilizado por YYYY-MM Verwendbar bis YYYY-MM Utilizzarre entro

Batch code Lot no. No de lote Chargenbezeichnung Lotto N.

Temperature limitation Limites de température Limite de temperature Temperaturgrenzen Limiti di temperatura

In vitro diagnostic medical device

Diagnostic in vitro Diagnóstico in vitro In-vitro-Diagnostikum Diagnostico in vitro

Manufacturer Fabricant Fabricante Hersteller Fabbricante

Consult instructions for use Lire la notice d'utilisation Consultar manual de instrucciones Gebrauchsanweisung beachten Consultare il manuale di istruzioni

Coated microplate Microplaque marqué Microplaca sensibilizada Beschichtete Microtiterplatte Micropiastra sensibilizzata

DIL SAMP

Sample diluent Diluant pour échantillon Diluyente de la muestra Probenverdünnungslösung Diluente per i campioni

REAG IgG REM

IgG removing reagent Réactif éliminant les IgG Absorbente-IgG IgG Absorptionsreagenz Reattivo de bloquage dello IgG

CAL

Calibrator Etalon Calibrador Kalibrator Calibratore

CONTROL CO

Cut-Off control Contrôle de Cut-Off Control de corte Cut-Off Kontrolle Controllo Cut-Off

CONTROL BORD

Borderline control Contrôle Intermédiaire Control intermedio Grenzwert Kontrolle Controllo Mezzo

CONTROL +

Positive control Contrôle Positif Control positivo Positiv Kontrolle Controllo positivo

CONTROL -

Negative control Contrôle négatif Control negativo Negativ Kontrolle Controllo negativo

CONJ | IgG

Conjugate IgG Conjugué IgG Conjugado IgG Konjugat IgG Conjugato IgG

CONJ IgA

Conjugate IgA Conjugué IgA Conjugado IgA Konjugat IgA Conjugato IgA

CONJ IgM

Conjugate IgM Conjugué IgM Conjugado IgM Konjugat IgM Conjugato IgM

SUBS TMB

TMB-Substrate (ready to use) TMB-Substrat (prêt à l'emploi) TMB-Substratlösung (gebrauchsfertig) Sustrato-TMB (préstamo para utilizar) TMB-substrato (prestito per usare)

SOLN STOP

Stopping solution (0.45 M H2SO4)

Solution Stop. (0.45 M H2SO4) Stopplösung (0.45 M H2SO4) Solución de parada (0.45 M H2SO4) Soluzione Stop (0.45 M H2SO4)

BUF WASH 10X

Washing solution (concentrate)
Solution de lavage (concentré)
Waschlösung (Konzentrat)
Solución de lavado (concentrado)
Soluzione di lavaggio (concentrato)

REAG BASS

Reagent basins
Bassins pour réactifs
Recipientes para los reagents
Einweg-Reagenzbehälter
Vaschette monouso per reagenti

PLAS COV

Incubation covers Couvercles d'incubation Cubiertas de incubación Inkubationsabdeckungen Pellicola adesiva per incubazione

Potential biohazardous material. Matériel à risque infectieux potentiel. Riesgo biológico potencial Potentiell infektiöses Material Materiale biologico potencialmente pericoloso